wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the integral
π/40sec3xdx

A
12+12log(2+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1212log(2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
22log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12log(2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 12+12log(2+1)
Let I=sec3xdx
Using reduction formula secmxdx=sinx.secm1xm1+m2m1sec2+mxdx
We get I=12tanxsecx+12secxdx

=12tanxsecx+12sec2x+tanxsecxtanx+secxdx
Let I1=12sec2x+tanxsecxtanx+secxdx
Substituting t=tanx+secxdt=(sec2x+tanxsecx)dx, we get
I1=121tdt=logt2=12log(tanx+secx)

Therefore, I=12tanxsecx+12log(tanx+secx)
Hence, π/40sec3xdx=[12tanxsecx+12log(tanx+secx)]π/40

=12+12log(2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon