3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 7
Evaluate the ...
Question
Evaluate the integral
∫
π
/
4
0
sec
3
x
d
x
A
1
√
2
+
1
2
log
(
√
2
+
1
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
√
2
−
1
2
log
(
√
2
+
1
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
√
2
⋅
log
√
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
√
2
l
o
g
(
√
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
1
√
2
+
1
2
log
(
√
2
+
1
)
Let
I
=
∫
sec
3
x
d
x
Using reduction formula
∫
sec
m
x
d
x
=
sin
x
.
sec
m
−
1
x
m
−
1
+
m
−
2
m
−
1
∫
sec
−
2
+
m
x
d
x
We get
I
=
1
2
tan
x
sec
x
+
1
2
∫
sec
x
d
x
=
1
2
tan
x
sec
x
+
1
2
∫
sec
2
x
+
tan
x
sec
x
tan
x
+
sec
x
d
x
Let
I
1
=
1
2
∫
sec
2
x
+
tan
x
sec
x
tan
x
+
sec
x
d
x
Substituting
t
=
tan
x
+
sec
x
⇒
d
t
=
(
sec
2
x
+
tan
x
sec
x
)
d
x
, we get
I
1
=
1
2
∫
1
t
d
t
=
log
t
2
=
1
2
log
(
tan
x
+
sec
x
)
Therefore,
I
=
1
2
tan
x
sec
x
+
1
2
log
(
tan
x
+
sec
x
)
Hence,
∫
π
/
4
0
sec
3
x
d
x
=
[
1
2
tan
x
sec
x
+
1
2
log
(
tan
x
+
sec
x
)
]
π
/
4
0
=
1
√
2
+
1
2
log
(
√
2
+
1
)
Suggest Corrections
0
Similar questions
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
[Karnataka CET 1999]