I0=∫10xn−1(1−x3)0dx
=∫10xn−1[C0−C1x+C2x2−⋯+(−1)nCnxn]dx
=∫10[C0xn−1−C1xn+C2xn+1+...+(−1)nCnx2n−1]dx
=[C0xnn−C1xn+1n+1+C2xn+2n+2−⋯+(−1)nCnx2n2n]10
=C0n−C1n+1+C2n+2−⋯+(−1)nCn2n = L.H.S.
Again putting x = sin2θ
∴dx=2sinθcosθdθ and adjust the limits as 0 to π/2.
I=∫π/202sin2n−1θcos2n+1θ.2sinθcosθdθ
=∫π/202sin2n−θcos2n+1θdθ
=2r(2n−1+12)r(2n+1+12)2r(4n+22)=rnr(n+1)r(2n+1)
=(n−1)!n!(2n)! as r (n + 1) = n!