Evaluate the integral
Let I=∫π0xsin5x⋅cos6xdx
I=∫π0(π–x)⋅sin5(π–x)⋅cos6(π–x)dx(∵∫baf(x)dx=∫baf(a+b–x)dx)
I=∫π0(π–x)sin5x⋅cos6xdx
I=∫π0πsin5x⋅cos6xdx−∫π0x⋅sin5x⋅cos6xdx
∴I=π∫π0sin5x⋅cos6xdx–I
∴I=π2∫π0sin5x⋅cos6dx
I=2⋅π2∫π0sin5x⋅cos6x⋅dx (∵f(2a–x)=f(x)∴∫2a0f(x)dx=2∫a0f(x)dx)
I=π⋅4×2×5×3×111×9×7×5×3×1=8π693 (using walli’s formula).