wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the integral

π0xsin5xcos6x dx=?

A
5π16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
35π128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5π8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8π693
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 8π693

Let I=π0xsin5xcos6xdx

I=π0(πx)sin5(πx)cos6(πx)dx(baf(x)dx=baf(a+bx)dx)


I=π0(πx)sin5xcos6xdx


I=π0πsin5xcos6xdxπ0xsin5xcos6xdx


I=ππ0sin5xcos6xdxI


I=π2π0sin5xcos6dx


I=2π2π0sin5xcos6xdx (f(2ax)=f(x)2a0f(x)dx=2a0f(x)dx)


I=π4×2×5×3×111×9×7×5×3×1=8π693 (using walli’s formula).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon