∫1−1dxx2+2x+5
=∫1−1dxx2+2x+1+4
=∫1−1dx(x+1)2+4
Let x+1=2 tanθ
⇒dxdθ=2sec2θ
⇒dx=2sec2θ dθ
The new limits are
When x=−1
⇒2 tanθ=−1+1⇒tanθ=0⇒θ=0
When x=1
⇒1 tanθ=1+1⇒tan θ=1⇒θ=π4
∫1−1dx(x+1)2+4
=∫π402sec2θ dθ4tan2θ+4
=12∫π40sec2θ dθtan2θ+1
=12∫π40sec2θ dθsec2θ+1
=12∫π40dθ
=12[θ]π4=12[π4−0]
=π8