wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the integral using substitution:
11dxx2+2x+5

Open in App
Solution

11dxx2+2x+5

=11dxx2+2x+1+4

=11dx(x+1)2+4

Let x+1=2 tanθ

dxdθ=2sec2θ

dx=2sec2θ dθ

The new limits are

When x=1

2 tanθ=1+1tanθ=0θ=0

When x=1

1 tanθ=1+1tan θ=1θ=π4

11dx(x+1)2+4

=π402sec2θ dθ4tan2θ+4

=12π40sec2θ dθtan2θ+1

=12π40sec2θ dθsec2θ+1

​​​​​​​=12π40dθ

=12[θ]π4=12[π40]

​​​​​​​=π8

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon