∫20dxx+4−x2
=−∫20dxx2−x−4
−∫20dxx2−x+(12)2−(12)2−4
=−∫20dx(x−12)2−14−4
=−∫20dx(x−12)2−174
Let
(x−12)=t
Differentiating with respect to t
dxdt=1⇒dx=dt
The new limits are
When x=0
⇒t=0−12=−12
When x=2
⇒t=2−12=−32
Now,
∫20dxx+4−x2
=−∫20dx(x−12)2−174
=−∫3212dtt2−174
=−∫3212dtt2−(√172)2
=−⎡⎢
⎢
⎢
⎢⎣12×√172×log∣∣
∣
∣
∣∣t−√172t+√172∣∣
∣
∣
∣∣⎤⎥
⎥
⎥
⎥⎦32−12
[∵∫dxx2−a2=12alog∣∣∣x−ax+a∣∣∣+C]
=−1√17[log∣∣∣2t−√172t+√17∣∣∣]32−12
=−1√17⎡⎢
⎢
⎢
⎢⎣⎛⎜
⎜
⎜⎝log∣∣
∣
∣
∣∣2⎛⎝32⎞⎠−√172⎛⎝32⎞⎠+√17∣∣
∣
∣
∣∣⎞⎟
⎟
⎟⎠−⎛⎜
⎜
⎜
⎜⎝log∣∣
∣
∣
∣∣2(−12)−√172(−12)+√17∣∣
∣
∣
∣∣⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥⎦
=−1√17[(log∣∣∣3−√173+√17∣∣∣)−(log∣∣∣−1−√17−1+√17∣∣∣)−]
=−1√17[(log∣∣∣3−√173+√17∣∣∣)−(log∣∣∣√17+1√17−1∣∣∣)]
=−1√17[(log∣∣∣3−√173+√17∣∣∣)+(log∣∣∣√17−1√17+1∣∣∣)]
=−1√17[(log∣∣
∣∣3−√173+√17×(√17−1√17+1)∣∣
∣∣)]
=−1√17[(log∣∣∣3√17−3−17+√173√17+3+17+√17∣∣∣)]
=−1√17[(log∣∣∣4√17−204√17+20∣∣∣)]
=−1√17[(log∣∣∣√17−5√17+5∣∣∣)]
=−1√17[(log∣∣∣√17−5√17+5×(√17+5√17+5)∣∣∣)]
=−1√17⎡⎢
⎢
⎢⎣⎛⎜
⎜⎝log∣∣
∣
∣∣(√17)2−52(√17+52)∣∣
∣
∣∣⎞⎟
⎟⎠⎤⎥
⎥
⎥⎦
=−1√17[(log∣∣∣17−2517+25+10√17∣∣∣)]
=−1√17[(log∣∣∣−842+10√17∣∣∣)]
=−1√17[(log∣∣∣−421+5√17∣∣∣)]
=−1√17[log(421+5√17)]
=−1√17[log(21+5√174)]