wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the integral using substitution:
20dxx+4x2

Open in App
Solution

20dxx+4x2

=20dxx2x4

20dxx2x+(12)2(12)24

=20dx(x12)2144

=20dx(x12)2174

Let

(x12)=t

Differentiating with respect to t

dxdt=1dx=dt

The new limits are

When x=0

t=012=12

When x=2

t=212=32

Now,

20dxx+4x2

=20dx(x12)2174

=3212dtt2174

=3212dtt2(172)2

=⎢ ⎢ ⎢ ⎢12×172×log∣ ∣ ∣ ∣t172t+172∣ ∣ ∣ ∣⎥ ⎥ ⎥ ⎥3212

[dxx2a2=12alogxax+a+C]

=117[log2t172t+17]3212

=117⎢ ⎢ ⎢ ⎢⎜ ⎜ ⎜log∣ ∣ ∣ ∣23217232+17∣ ∣ ∣ ∣⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜log∣ ∣ ∣ ∣2(12)172(12)+17∣ ∣ ∣ ∣⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥

=117[(log3173+17)(log1171+17)]

=117[(log3173+17)(log17+1171)]

=117[(log3173+17)+(log17117+1)]

=117[(log∣ ∣3173+17×(17117+1)∣ ∣)]

=117[(log317317+17317+3+17+17)]


=117[(log41720417+20)]

=117[(log17517+5)]

=117[(log17517+5×(17+517+5))]

=117⎢ ⎢ ⎢⎜ ⎜log∣ ∣ ∣(17)252(17+52)∣ ∣ ∣⎟ ⎟⎥ ⎥ ⎥

=117[(log172517+25+1017)]

=117[(log842+1017)]

=117[(log421+517)]

=117[log(421+517)]

=117[log(21+5174)]

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon