Evaluate the integral using substitution:
∫π20sin x1+cos2 xdx
Let cos x=t
Differentiate with respect to t
=dtdx=−sin x⇒−dt=sin x dx
The new limits are
When
x=0⇒t=cos 0=1
When
x=2⇒t=cosπ2=0
Now,
∫π20sin x1+cos2 xdx
=∫01−dt1+t2
=−[tan−1t]01
=−[tan−10−tan−11]
=−[0−π4]
=π4