Evaluate the integrals using substitution. ∫10xx2+1dx.
Let I=∫10xx2+1dx Put x2+1=t⇒2x=dtdx⇒dx=dt2x For limit, when x=0 ⇒ t =1 and when x=1⇒t=2 (∵t=x2+1) ∴I=∫21xtdt2x=12∫211tdt=12[log|t|]21=12[log|2|−log|1|]=12log2 (∵log1=0)
Evaluate the integrals using substitution. ∫1−11x2+2x+5dx.
Evaluate the integrals using substitution. ∫21(1x−12x2)exdx.
Evaluate the integrals using substitution. ∫20x√x+2dx.