Evaluate the integrals using substitution.
∫10sin−1(2x1+x2)dx
Let I=∫10sin−1(2x1+x2)dx
Put tan θ=x⇒sec2θdθ=dx or θ=tan−1x
For limit when x=0⇒θ=0 and when x =1⇒θ=π4(∵θ=tan−1x)
∴I=∫π40sin−1(2tanθ1+tan2θ)sec2θdθ=∫π40sin−1(sin2θ)sec2θdθ(∵sin2θ=2tanθ1+tan2θ)=2∫π40θsec2θdθ
Now, applying rule of integration by parts taking θ as the first function and sec2θ as second function, we get
I=2[θ∫sec2θdθ−∫{(ddθθ)}∫sec2θdθ]π40=2[θtanθ−∫1tanθdθ]π40(∵∫sec2θdθ=tanθ)=2[θtanθ+log|cosθ|]π40(∵∫tanθdθ=−logcosθ)=2{(π4tanπ4+log∣∣cosπ4∣∣)−(0+log|cos0|)}=π2+2log1√2−0(∵log1=0)=π2+2log2−12=π2−2×12log2 (∵logmn=nlogm)=π2−log2