Evaluate the integrals using substitution.
∫π20sinx1+cos2xdx.
Let I=∫π20sinx1+cos2xdx
Put cosx=t⇒−sinxdx=dt⇒dx=dt−sinx
For limit when x=0⇒t=cos0=1 (∵t=cosx) and when x=π2⇒t=cosπ2=0
∴I=∫01sinx1+t2dt(−sinx)dx=−∫0111+t2dt(∵∫1a2+x2dx=1atan−1xa)=−[11tan−1(t1)]01=−[tan−1t]01=−[tan−1(0)−tan−1(1)]=−(0−π4)=π4.