Evaluate the integrals using substitution.
∫π20√sinϕcos5ϕdϕ.
∫π20√sinϕcos5ϕdϕ.=∫π20√sinϕ(1−sin2ϕ)2cosϕdϕ(∵cos2θ+sin2θ=1)
Put sin ϕ=t⇒cosϕ=dtdϕ⇒dϕ=dtcosϕ
For limit when ϕ=0⇒t=1 and when ϕ=π2⇒t=1
∴I=∫10√t(1−t2)2dt=∫10√t(t4+1−2t2)dt
=∫10(t92+t12−2t52)dt=[t92+1(92+1)+t12+112+1−2(t52+152+1)]10=[211+23−47]−0=42+154−13211×3×7=64231