Evaluate the integrals using substitution. ∫1−11x2+2x+5dx.
∫1−11x2+2x+5dx=∫1−11(x2+2x+1)+4dx=∫1−11(x+1)2+22dx=12[tan−1x+12]1−1[∵∫dxa+x2=1atan−1xa]=12[tan−1(22)−tan−1(02)]=12[tan−11]=12×π4=π8.
Evaluate the integrals using substitution. ∫10xx2+1dx.
Evaluate the integrals using substitution. ∫21(1x−12x2)exdx.
Evaluate the following integral: