Evaluate the left hand and right hand limits of the function defined by f(x)={1+x2, if 0≤x≤12−x, if x>1 at x=1. Also show that limx→1f(x) does not exist.
Open in App
Solution
Left hand limit:
ltx→1f(x)
=ltx→11+x2[∵f(x)=1+x2 when x≤1]
=1+1
=2
Right hand limit
ltx→1+f(x)
=ltx→12−x[∵f(x)=2−x when x>1]
=1
Since, ltx→1−f(x)≠ltx→1+f(x),ltx→1f(x) does not exist.