Given:
limx→0+{1+tan2√x}1/2x
It becomes 1∞ form
Using the result below:
If limx→af(x)=1 and limx→ag(x)=∞ such that limx→a{f(x)−1}g(x) exists, then
limx→a{f(x)}g(x)=elimx→a{f(x)−1}g(x)
Here,
f(x)=1+tan2√x
g(x)=12x
=elimx→0+⎛⎜
⎜⎝tan2√x2x⎞⎟
⎟⎠
=elimx→0+⎛⎜⎝⎛⎜⎝tan√x√x⎞⎟⎠×⎛⎜⎝tan√x√x⎞⎟⎠×12⎞⎟⎠
=e1×1×12=√e
[∵limx→0tanxx=1]