Given:
limx→0(cosx+asinbx)1/x
It becomes 1∞ form
Using the result below:
If limx→af(x)=1 and limx→ag(x)=∞ such that limx→a{f(x)−1}g(x) exists, then
limx→a{f(x)}g(x)=elimx→a{f(x)−1}g(x)
Here,
f(x)=cosx+asinbx
g(x)=1x
=elimx→0⎛⎝cosx+asinbx−1x⎞⎠
=elimx→0⎛⎜⎝asinbx−(1−cosx)x⎞⎟⎠
=elimx→0⎛⎜
⎜
⎜
⎜
⎜⎝asinbx−2sin2x2x⎞⎟
⎟
⎟
⎟
⎟⎠
[∵1−cos2θ=2sin2θ]
=elimx→0⎛⎜
⎜
⎜
⎜
⎜⎝absinbxbx−sinx2x2×sinx2⎞⎟
⎟
⎟
⎟
⎟⎠
=eab(1)−1×0 [∵limx→0sinxx=1]
=eab
Therefore,
limx→0(cosx+asinbx)1/x=eab