wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx0(cosx+asinbx)1/x

Open in App
Solution

Given:
limx0(cosx+asinbx)1/x

It becomes 1 form

Using the result below:

If limxaf(x)=1 and limxag(x)= such that limxa{f(x)1}g(x) exists, then

limxa{f(x)}g(x)=elimxa{f(x)1}g(x)

Here,

f(x)=cosx+asinbx

g(x)=1x

=elimx0cosx+asinbx1x

=elimx0asinbx(1cosx)x

=elimx0⎜ ⎜ ⎜ ⎜ ⎜asinbx2sin2x2x⎟ ⎟ ⎟ ⎟ ⎟

[1cos2θ=2sin2θ]

=elimx0⎜ ⎜ ⎜ ⎜ ⎜absinbxbxsinx2x2×sinx2⎟ ⎟ ⎟ ⎟ ⎟

=eab(1)1×0 [limx0sinxx=1]

=eab

Therefore,
limx0(cosx+asinbx)1/x=eab

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon