Given:
limx→0(cosx+sinx)1/x
It becomes 1∞ form
Using the result below:
If limx→af(x)=1 and limx→ag(x)=∞ such that limx→a{f(x)−1}g(x) exists, then
limx→a{f(x)}g(x)=elimx→a{f(x)−1}g(x)
Here,
f(x)=cosx+sinx
g(x)=1x
limx→0(cosx+sinx)1/x
=elimx→0⎛⎝cosx+sinx−1x⎞⎠
=elimx→0⎛⎜⎝sinxx−(1−cosx)x⎞⎟⎠
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝sinxx−2sin2x2x⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
[∵1−cos2θ=2sin2θ]
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝sinxx−2sin(x2)×sin(x2)2×x2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=elimx→0⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝sinxx−sin(x2)x2×sin(x2)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=e1−1×0
[∵limx→0sinxx=1]
=e1=e
Therefore,
limx→0(cosx+sinx)1/x=e