We have,
limx→01−cos 2x+tan 2xx sin x
It becomes 0/0 form.
=limx→02 sin2x+tan 2xx sin x [∵1−cos 2x=2 sin2x]
On dividing numerator and denominator by x2,
we get
=limx→02 sin2xx2+tan 2xx2x sinxx2
=limx→02(sin xx)2+(tan xx)2sin xx
[∵limx→0sin xx=1,limx→0tan xx=1]
={2(1)2+(1)2}1
=3
Therefore,
limx→01−cos 2x+tan 2xx sin x=3