wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:

limx02sinxsin2xx3

Open in App
Solution

We have,

limx0[2sinxsin(2x)x3]

[1=π180radians]

=limx0⎢ ⎢ ⎢ ⎢2sin(πx180)sin(2πx180)x3⎥ ⎥ ⎥ ⎥

[sin2θ=2sinθcosθ]

=limx0⎢ ⎢ ⎢ ⎢2sin(πx180)2sin(πx180)×cos(πx180)x3⎥ ⎥ ⎥ ⎥

=limx0⎢ ⎢ ⎢ ⎢2sin(πx180)[1cos(πx180)]x3⎥ ⎥ ⎥ ⎥

=limx0⎢ ⎢ ⎢ ⎢2sin(πx180)×2sin2(πx360)x×x2⎥ ⎥ ⎥ ⎥

[1cosθ=2sin2θ2]

limx0⎢ ⎢ ⎢ ⎢4sin[πx180]×sin2[πx360]πx180×πx360×πx360×π180×(π360)2⎥ ⎥ ⎥ ⎥

=4limx0⎢ ⎢ ⎢ ⎢sin(πx180)πx180×sin(πx360)πx360×sin(πx360)πx360×π3180×3602⎥ ⎥ ⎥ ⎥

=4×1×1×1×π3180×360×360

[limθ0(sinθθ)=1,θ is in radians]

=(π180)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon