Solution:
We have,
limx→02sinx−sin2xx3
It becomes 00 form.
=limx→02sinx−2sinxcosxx3
[∵sin2x=2sinxcosx]
=limx→02sinx(1−cosx)x3
[∵1−cosx=2sin2x2]
=limx→02sinx(2sin2x2)x3
=limx→04×sinxx×sinx2x2×sinx2x2×14
=4×1×1×14
[∵limx→0sinxx=1,limx→0cosx=1]
=1
∴limx→02sinx−sin2xx3=1