wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit: limx02sinxsin2xx3

Open in App
Solution

Solution:
We have,

limx02sinxsin2xx3

It becomes 00 form.

=limx02sinx2sinxcosxx3

[sin2x=2sinxcosx]

=limx02sinx(1cosx)x3

[1cosx=2sin2x2]

=limx02sinx(2sin2x2)x3

=limx04×sinxx×sinx2x2×sinx2x2×14

=4×1×1×14

[limx0sinxx=1,limx0cosx=1]

=1

limx02sinxsin2xx3=1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon