We have:
limx→05x−1√4+x−2
Rationalising the denominator, we get
=limx→0(5x−1)(√4+x−2)×√4+x+2√4+x+2
=limx→0[(5x−1)(√4+x+2)(√4+x)2−22]
[∵(a+b)(a−b)=a2−b2]
=limx→0[(5x−1)(√4+x+2)4+x−4]
=limx→0[(5x−1)(√4+x+2)x]
=limx→0[(5x−1x)×(√4+x+2)]
=ln5×(√4+0+2) [∵limx→0ax−1x=lna]
=ln5×(2+2)=4ln5
Therefore,
limx→05x−1√4+x−2=4ln5