We have,
limx→07x cosx−3sinx4x+tanx
It becomes 0/0 form.
Dividing numerator and denominator by x , we get
=limx→07 cosx−3(sinxx)4+(tanxx)
=7limx→0(cosx)−3limx→0(sinxx)4+limx→0(tanxx)
[∵limx→0sinxx=1,limx→0tanxx=1]
=7⋅1−3⋅14+1
=45
Therefore,
limx→07x cosx−3sinx4x+tanx=45