Given:
limx→08x−4x−2x+1x2
=limx→023x−22x−2x+1x2
=limx→022x(2x−1)−1(2x−1)x2
=limx→0(22x−1)(2x−1)x2
=limx→02×(22x−1)2x×(2x−1)x
=2limx→0(22x−1)2x×limx→0(2x−1)x
=2log2×log2
[limx→0(ax−1x)=loga]
=(log22)(log2)
=(log4)(log2)
Therefore,
limx→08x−4x−2x+1x2=(log4)(log2)