wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx0ex11cosx

Open in App
Solution

We have,
limx0ex11cosx[1cos2θ=2sin2θ]

=limx0ex12sin2x2

=limx0ex12sinx2

Dividing the Numerator and Denominator by 𝑥
=limx0ex1x×12sinx22×x2

=limx0ex1x×2sinx2x2
=loge×limx02sinx2x2 (1)[limx0(ax1x)=loga]

Now,
L.H.L. at x=0
Put x=0h, in equation (1)
If x0, then h0
=limh02sinh2h2

=limh02sinh2h2
=2

Now,
R.H.L. at x=0
Put x=0+h, in equation (1)
If x0, then h0
=limh02sinh2h2

=limh02sinh2h2
=2

L.H.L.R.H.L.
Hence, limit does not exist.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon