We have,
limx→0ex−1√1−cosx[∵1−cos2θ=2sin2θ]
=limx→0ex−1√2sin2x2
=limx→0ex−1√2∣∣∣sinx2∣∣∣
Dividing the Numerator and Denominator by 𝑥
=limx→0ex−1x×1√2∣∣∣sinx2∣∣∣2×x2
=limx→0ex−1x×√2∣∣sinx2∣∣x2
=loge×limx→0√2∣∣∣sinx2∣∣∣x2 ⋯(1)[∵limx→0(ax−1x)=loga]
Now,
L.H.L. at x=0
Put x=0−h, in equation (1)
If x→0, then h→0
=limh→0√2∣∣∣sin−h2∣∣∣−h2
=limh→0−√2sinh2h2
=−√2
Now,
R.H.L. at x=0
Put x=0+h, in equation (1)
If x→0, then h→0
=limh→0√2∣∣∣sinh2∣∣∣h2
=limh→0√2sinh2h2
=√2
L.H.L.≠R.H.L.
Hence, limit does not exist.