Given:
limx→0√1+x−1log(1+x)
Rationalising the Numerator
=limx→0√1+x−1log(1+x)×√1+x+1√1+x+1
=limx→0(√1+x)2−12log(1+x)[√1+x+1]
[∵(a+b)(a−b)=a2−b2]
=limx→01+x−1log(1+x)[√1+x+1]
=limx→0xlog(1+x)[√1+x+1]
=limx→01log(1+x)x×1[√1+x+1]
=1×1[√1+0+1]=12[∵limx→0log(1+x)x=1]
Therefore,
limx→0√1+x−1log(1+x)=12