limx→0√1+x−1x On rationalising numerator, we get
=limx→0(√1+x−1)(√1+x+1)x(√1+x+1)
=limx→0((√1+x)2−12)x(√1+x+1)
[∵(a−b)(a+b)=a2−b2]
=limx→0=(1+x−1)x(√1+x+1)
=limx→0xx(√1+x+1)[x≠0]
=limx→01(√1+x+1)
=1(√1+0+1) =12
∴limx→0√1+x−1x=12