wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the limit:
limx01+x21+x1+x31+x

Open in App
Solution

At x0,

1+x21+x1+x31+x becomes 00

limx01+x21+x1+x31+x

On rationalising numerator and denominator, we get

=limx0(1+x21+x)(1+x2+1+x)(1+x3+1+x)(1+x31+x)(1+x2+1+x)(1+x3+1+x)

=limx0((1+x2)2(1+x)2)(1+x3+1+x)((1+x3)2(1+x)2)(1+x2+1+x)

=limx0(1+x21x)(1+x3+1+x)(1+x31x)(1+x2+1+x)

=limx0(x2x)(1+x3+1+x)(x3x)(1+x2+1+x)

=limx0x(x1)(1+x3+1+x)x(x21)(1+x2+1+x)

=limx0x(x1)(1+x3+1+x)x(x1)(1+x)+(1+x2+1+x)

[x0,(x1)0]

=limx01+x3+1+x(x+1)(1+x2+1+x)

=(1+03+1+x)(0+1)(1+02+1+x)

=22=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon