√1+x2−√1−x2xbecomes00form
limx→0√1+x2−√1−x2x
On rationalising numerator, we get
=limx→0(√1+x2−√1−x2)(√1+x2+√1−x2)x(√1+x2+√1−x2)
=limx→0((√1+x2)2−(√1−x2)2)x(√1+x2+√1−x2)
=limx→0(1+x2−1+x2)x(√1+x2+√1−x2)
=limx→02x2x(√1+x2+√1−x2)[x≠0]
=limx→02x(√1+x2+√1−x2)
=2(0)(√1+02+√1−02)
=0