We have,
limx→0tan 3x−2x3x−sin2 x
It becomes 0/0 form.
Taking x common from numerator and denominator.
=limx→0x(tan 3xx−2)x(3−sin2 xx)
=limx→0(tan 3xx−2)(3−sin xx(sin x))
=limx→03×tan 3x3x−2(3−sin xx(sin x))
[∵limx→0sin xx=1,limx→0tan xx=1]
=3−23−1(0)
=13
Therefore,
limx→0tan 3x−2x3x−sin2 x=13