We have,
limx→0 tan x−sin xsin 3x−3sin x
It becomes 0/0 form.
=limx→0[sin xcos x−sin x3 sinx−4 sin3 x−3sin x]
[∵sin3x=3sin x−4sin3x]
=limx→0[sin x(1−cos x)cos x×(−4sin3x)]
=limx→0⎡⎢
⎢
⎢
⎢⎣2sin2(x2)cos x×−4sin2x⎤⎥
⎥
⎥
⎥⎦
[∵1−cosx=2sin2x2]
=limx→0⎡⎢
⎢⎣2sin(x2)×sin(x2)cos x×(−4sin x)×sinx⎤⎥
⎥⎦
=limx→0⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣2sin(x2)x2×x2×sin(x2)x2x2cos x×−4sin xx×xsinxx×x⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[∵limx→0sin xx=1]
=limx→0⎡⎢
⎢⎣2×x2×x2cos x×−4×x×x⎤⎥
⎥⎦
=−18 cos 0
=−18