We have,
limx→0cosec x−cotxx
=limx→01sinx−cosxsinxx
=limx→01−cosxxsinx
=limx→02sin2x2xsinx
[∵1−cosx=2sin2x2]
Dividing numerator and denominator by x2, we get
limx→02×12×sinx2x2×12×sinx2x2sinxx
=2×12×1×12×11
[∵limx→0sinxx=1]
=12
∴limx→0cosecx−cotxx=12