Given:
limx→0x(ex−1)1−cosx
=limx→0x(ex−1)2sin2x2
Dividing the numerator and the Denominator x2
=limx→0x(ex−1)x×12sin2x24x24
=limx→0(ex−1)x×2⎛⎜
⎜
⎜
⎜⎝sin2x2x222⎞⎟
⎟
⎟
⎟⎠
=loge×212
[∵limx→0(ax−1x)=loga,limx→0sinxx=1]
=1×2=2
Therefore,
limx→0x(ex−1)1−cosx=2