We have
limx→0xtanx1−cos2x
It becomes 0/0 form.
=limx→0xtanx2sin2x [∵1−cos2x=2sin2x]
Dividing numerator and denominator by x2,
we get
=limx→0tanxx2sin2xx2
=limx→0tanxx2×sinxx×sinxx
[∵limx→0sinxx=1,limx→0tanxx=1]
=12×1×1
=12
Therefore,
limx→0xtanx1−cos2x=12