At x→−12, 8x3+12x+1 becomes 00 form Now, limx→−1/2(2x)3−(−1)32x−(−1) =limx→−1/2[(2x)3−(−1)32x−(−1)] Taking 2x=y Also, x→−1/2⇒2x→−1⇒y→−1 =limy→−1y3−(−1)3y−(−1) =3(−1)3−1 [∵limx→axn−anx−a=nan−1] =3
limx→−128x3+12x+1