limx→1√5x−4−√xx3−1, (00) form
On rationalising numerator, we get
=limx→1(√5x−4−√x)(√5x−4+√x)(x3−1)(√5x−4+√x)
=limx→1((√5x−4)2−(√x)2)(x3−1)(√5x−4+√x)
[∵(a−b)(a+b)=a2−b2]
=limx→1(5x−4−x)(x3−1)(√5x−4+√x)
[∵(a3−b3)=(a−b)(a2+ab+b2)]
=limx→14(x−1)(x−1)(x2+x+1)(√5x−4+√x)
[(x−1)≠0]
=limx→14(x2+x+1)(√5x−4+√x)
=4(12+1+1)(√5(1)−4+√1)
=43(1+1)
=23