Atx→1,√5x−4−√xx−1becomes 00form
limx→1√5x−4−√xx−1
On rationalising numerator, we get
=limx→1(√5x−4−√x)(√5x−4+√x)(x−1)(√5x−4+√x)
=limx→1((√5x−4)2−(√x)2)(x−1)(√5x−4+√x)
=limx→1(5x−4−x)(x−1)(√5x−4+√x)
=limx→1(4x−4)(x−1)(√5x−4+√x)
=limx→14(x−1)(x−1)(√5x−4+√x)[(x−1)≠0]
=limx→14(√5x−4+√x)
=4(√5(1)−4+√1)
=2