At x→1,√5x−4−√xx2−1 becomes 00form
limx→1√5x−4−√xx2−1
On rationalising numerator, we get
=limx→1(√5x−4−√x)(√5x−4+√x)(x2−1)(√5x−4+√x)
=limx→1((√5x−4)2−(√x)2)(x2−1)(√5x−4+√x)
[∵(a−b)(a+b)=a2−b2]
=limx→1(5x−4−x)(x2−1)(√5x−4+√x)
=limx→1(4x−4)(x+1)(x−1)(√5x−4+√x)
=limx→14(x−1)(x+1)(x−1)(√5x−4+√x)
[(x−1)≠0]
=limx→14(x+1)(√5x−4+√x)
=4(1+1)(√5(1)−4+√1)
=44
=1
∴limx→1√5x−4−√xx2−1=1