⇒limx→1√x2−12+√x−1√x2−12
⇒limx→1√(x−1)(x+1)+√x−1√(x−1)(x+1)
[∵a2−b2=(a+b)(a−b)]
⇒limx→1√x−1(√(x+1)+1)√(x−1)√(x+1)
⇒limx→1√(x+1)+1√(x+1)=√(1+1)+1√(1+1)
=√2+1√2
Therefore,
⇒limx→1√x2−1+√x−1√x2−1=√2+1√2