limx→1x−1√x2+3−2
On rationalising denominator, we get
=limx→1(x−1)(√x2+3+2)(√x2+3−2)(√x2+3+2)
=limx→1(x−1)(√x2+3+2)((√x2+3)2−22)
[∵(a−b)(a+b)=(a2−b2)]
=limx→1(x−1)(√x2+3+2)(x2+3−4)
=limx→1(x−1)(√x2+3+2)(x2−1)
=limx→1(x−1)(√x2+3+2)(x−1)(x+1)[(x−1)≠0]
=limx→1(√x2+3+2)(x+1)
=(√12+3+2)(1+1)
=2