At x→1, x2−√x√x−1 becomes 00 form limx→1x2−√x√x−1 =limx→1√x⎛⎜⎝x32−1⎞⎟⎠√x−1 =limx→1√x((√x)3−1)√x−1 =limx→1√x(√x−1)((√x)2+√x+1)√x−1 [√x−1≠0] =limx→1√x(x+√x+1) =√1(1+√1+1)=3