⇒x3+3x2+6x+2=(x−1)(x2+4x−2) Also, denominator
⇒x3+3x2−3x−1=(x−1)(x2+4x+1)
∴limx→1x3+3x2−6x+2x3+3x2−3x−1
=limx→1(x−1)(x2+4x−2)(x−1)(x2+4x+1)
⇒limx→1(x2+4x−2)(x2+4x+1)
=(12+4(1)−1)(12+4(1)+1)=36
=12
Therefore,
limx→1x3+3x2−6x+2x3+3x2−3x−1=12
limx→1x3+3x2−6x+2x3+3x2−3x−1