Given:
limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2
Then we have,
limx→1{x3+2x2+x+1x2+2x+3}L ⋯(1)
Let L=1−cos(x−1)(x−1)2
As x→1
It becomes (00)
limx→1L=limx→12sin2(x−12)4×((x−1)24)
[∵1−cos2θ=2sin2θ]
=12limx→1⎛⎜
⎜
⎜
⎜⎝sin(x−12)(x−12)⎞⎟
⎟
⎟
⎟⎠2
From equation (1), we get
limx→1{x3+2x2+x+1x2+2x+3}12limx→1⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝sin(x−12)(x−12)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠2
=(13+2(1)2+1+112+2(1)+3)12×12
[∵limx→0sinxx=1]
=(56)12×12=√56
Therefore,
limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2=√56