√1+4x−√5+2xx−2 becomes00form
limx→2√1+4x−√5+2xx−2
On rationalising numerator, we get
=limx→2(√1+4x−√5+2x)(√1+4x+√5+2x)(x−2)(√1+4x+√5+2x)
=limx→2((√1+4x)2−(√5+2x)2)(x−2)(√1+4x+√5+2x)
[∵(a−b)(a+b)=a2−b2]
=limx→2(1+4x−5−2x)(x−2)(√1+4x+√5+2x)
=limx→2(2x−4)(x−2)(√1+4x+√5+2x)
=limx→22(x−2)(x−2)(√1+4x+√5+2x)[(x−2)≠0]
=limx→22(√1+4x+√5+2x)
=2(√1+4(2)+√5+2(2))
2(√9+√9)
=23+3
=26
=13
Therefore,
limx→2√1+4x−√5+2xx−2=13