limx→2√3−x−12−x On rationalising numerator, we get
=limx→2(√3−x−1)(√3−x+1)(2−x)(√3−x+1)
=limx→2((√3−x)2−12)(2−x)(√3−x+1)
=limx→2(3−x−1)(2−x)(√3−x+1)
=limx→2(2−x)(2−x)(√3−x+1)[(2−x)≠0]
=limx→21(√3−x+1)
=1(√3−2+1)=12
∴limx→2√3−x−12−x=12
Evaluate the following limit: limx→−21x+12x+2