limx→2√x2+1−√5x−2
On rationalising numerator, we get
=limx→2(√x2+1−√5)(√x2+1+√5)(x−2)(√x2+1+√5)
=limx→2((√x2+1)2−(√5)2)(x−2)(√x2+1+√5)
[∵(a−b)(a+b)=a2−b2]
=limx→2(x2+1−5)(x−2)(√x2+1+√5)
=limx→2(x2−4)(x−2)(√x2+1+√5)
=limx→2(x+2)(x−2)(x−2)(√x2+1+√5)[(x−2)≠0]
=limx→2(x+2)(√x2+1+√5)
=2+2√22+1+√5
=42√5
=2√5