Given:
limx→2x−2loga(x−1)
Put x=2+h
If x→2, then h→0
=limh→02+h−2loga(2+h−1)
=limh→0hloga(1+h)
=limh→0hloge(1+h)logea [∵logab=logeblogea]
=limh→0hlogealoge(1+h)
=limh→0logealoge(1+h)h
=logea1=loga
[∵limx→0loge(1+x)x=1]
Therefore,
limx→2x−2loga(x−1)=loga