=limx→2{1x−2−2(2x−3)x(x2−3x+2)}
=limx→2{1x−2−2(2x−3)x(x2−2x−x+2)}
=limx→2{1x−2−2(2x−3)x(x(−2)−1(x−2))}
=limx→2{1x−2−2(2x−3)x(x−1)(x−2)}
=limx→2{x(x−1)−2(2x−3)x(x−1)(x−2)}
=limx→2{x2−x−4x+6x(x−1)(x−2)}
=limx→2{x2−5x+6x(x−1)(x−2)}
=limx→2{x2−3x−2x+6x(x−1)(x−2)}
=limx→2{x(x−3)−2(x−3)x(x−1)(x−2)}
=limx→2{(x−2)(x−3)x(x−1)(x−2)}
=limx→2{(x−3)x(x−1)}=(2−3)2(2−1)=−12
Therefore,
=limx→2{1x−2−2(2x−3)x(x2−3x+2)}=−12