Given: limx→2(1x−2−4x3−2x2)
becomes (∞−∞) form Using Factorization method
limx→2(1x−2−4x3−2x2)
⇒limx→2(x2−4x3−2x2)
[∵(a2−b2)=(a+b)(a−b)]
⇒limx→2((x+2)(x−2)x2(x−2))
limx→2(x+2x2)=2+222
=44=1
Therefore,
⇒limx→2(1x−2−4x3−2x2)=1