At x→7, 4−√9+x1−√8−x becomes 00form
limx→74−√9+x1−√8−x
On rationalising numerator and denominator, we get
=limx→7(4−√9+x)(4+√9+x)(1+√8−x)(1−√8−x)(4+√9+x)(1+√8−x)
=limx→7(42−(√9+x)2)(1+√8−x)(12−(√8−x)2)(4+√9+x)
[∵(a−b)(a+b)=a2−b2]
=limx→7(7−x)(1+√8−x)(−7+x)(4+√9+x)
=limx→7−(x−7)(1+√8−x)(x−7)(4+√9+x)[(x−7)≠0]
=limx→7−1(1+√8−x)(4+√9+x)
=−(1+√8−7)(4+√9+7)
=−(1+1)(4+4)
=−14