limx→144x−12√x−1=limx→14(2√x)2−122√x−1
limx→14(2√x−1)(2√x+1)2√x−1
[∵(a2−b2)=(a+b)(a−b)]
limx→14(2√x+1)
=(2√14+1)=(2(12)+1)
=1+1=2
Therefore,
limx→144x−12√x−1=2
limx→144x−12√x−1
Evaluate the following limits :
limx→∞(3x−1)(4x−2)(x+8)(x−1)