We have,
limx→∞3x3−4x2+6x−12x3+x2−5x+7
Dividing numerator and denominator by x3, we get
=limx→∞(3x3−4x2+6x−1x3)(2x3+x2−5x+7x3)
=limx→∞(3−4x+6x2−1x3)(2+1x−5x2+7x3)
When x→∞, then 1x→0
=(3−4(0)+6(0)−0)(2+0−5(0)+7(0))=32
Therefore,
limx→∞3x3−4x2+6x−12x3−x2+5x+7=32