We have,
limx→∞{x2+2x+32x2+x+5}3x−23x+2
=limx→∞⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩x2(1+2x+3x2)x2(2+1x+5x2)⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭x(3−2x)x(3+2x)
=limx→∞⎡⎢
⎢
⎢
⎢⎣(1+2x+3x2)(2+1x+5x2)⎤⎥
⎥
⎥
⎥⎦(3−2x)(3+2x)
As x→∞⇒1x→0
=[1+0+02+0+0](3−0)(3+0)
=12
Therefore,
limx→∞{x2+2x+32x2+x+5}3x−23x+2=12